
 

Week 10 
MTH-1322 – Calculus 2 

 
Hello and Welcome to the weekly resources for MTH-1322 – Calculus 2! 

  
This week is Week 10 of class, and typically in this week of the semester, your 
professors are covering these topics below.  If you do not see the topics your particular 
section of class is learning this week, please take a look at other weekly resources listed on 
our website for additional topics throughout of the semester.  
  
We also invite you to look at the group tutoring chart on our website to see if this course 
has a group tutoring session offered this semester.  
  
If you have any questions about these study guides, group tutoring sessions, private 30 
minute tutoring appointments, the Baylor Tutoring YouTube channel or any tutoring services 
we offer, please visit our website www.baylor.edu/tutoring or call our drop in center during 
open business hours. M-Th 9am-8pm on class days 254-710-4135. 

             
 
Keywords: Sequence, Convergence, Divergence, Squeeze Theorem, Bounded, Monotonic, 
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Highlight 1: 10.1 Sequences 
 
“A sequence {an} is an ordered collection of numbers defined by a function on a set of 
sequential integers. The values of an = f(n) are called the terms of the sequence, and n is 
called the index” (Rogawski 537). One can also just think of a sequence as a list. A sequence 
can be finite, if it only contains a finite number of terms, or infinite if it goes on forever.  
 
A sequence is said to converge to a limit L if, generally speaking, the further out one gets in 
the sequence, the closer the terms get to L. This concept of convergence is almost identical to 
the concept of the convergence of a function to a horizontal asymptote. The mathematical 
notations for this are  

lim
!→#

𝑎! = 𝐿					𝑜𝑟						𝑎! → 𝐿 
 



 

If, for a given sequence, such a limit L exists, the sequence is said to converge. If no such L 
exists, the sequence is said to diverge. 
 
It is commonplace that the most natural way to specify the terms of a sequence is with a 
function an = f(n). In this case, the difference between the sequence and the function is that 
the function is defined on it’s entire (real) range, while the sequence is only defined on 
discrete, counting values of n. Intuitively, if the function converges to some asymptote, the 
sequence also converges to that value: 

lim
!→#

𝑎! = lim
$→#

𝑓(𝑥) 
 
The usefulness of this seemingly obvious statement is that all of one’s tools for functional 
convergence translate directly over to sequences: convergence tests, comparison tests, and 
the like. 
 
A special type of sequence is the geometric sequence, which is any sequence in the form 
𝑎! = 𝑐 ∗ 𝑟!. The rules for convergence of a geometric sequence are as follows: 

lim
!→#

𝑐 ∗ 𝑟! = 1
0 𝑖𝑓 0 ≤ 𝑟 < 1
𝑐 𝑖𝑓 𝑟 = 1
∞ 𝑖𝑓 𝑟 > 1

 

 
The Squeeze Theorem translates to sequences, as do the algebraic limit laws: 
 

 
(Rogawski 541). 

 
It is also true that limits can commute with continuous functions, such that 

lim
!→#

𝑓(𝑎!) = 𝑓( lim
!→#

𝑎!) = 𝑓(𝐿) 
 
A sequence is said to be bounded from above if there is some single number that is greater 
than every number in the sequence. A sequence is said to be bounded from below if there is 
some single number that is less than every number in the sequence. A sequence is simply 
called bounded if it is bounded from above and from below, and a sequence is called 
unbounded if it is not bounded. It is easy to prove boundedness from convergence. But we are 



 

often interested in proving convergence, and to prove convergence from boundedness, we 
need another concept: monotonicity.  
 
A monotonic increasing sequence is one who’s terms are always increasing. A monotonic 
decreasing sequence is one who’s terms are always decreasing.  
 
If {an} is bounded above by M and is increasing monotonic, then {an} converges and 
lim
!→#

𝑎! ≤ 𝑀. If {an} is bounded below by m and is decreasing monotonic, then {an} 
converges and lim

!→#
𝑎! ≥ 𝑚 (Rogawski 544). 

 
Highlight 2: 10.2 Infinite Series 

. 
A series is the sum of a sequence. Where a sequence might look like this 
1, 2, 4, 8, 16, 32, 64, … 
a series will look like this 
1+2+4+8+16+32+64+… 
 
Typically, the series that interest us in mathematics are infinite, meaning they consist in a 
sum of an infinite number of terms. We call the nth partial sum (Sn) of an infinite series the 
sum of the first n terms. For example, the 4th partial sum of the above series is  
S4 = 1+2+4+8 = 15. We are often interested in proving the convergence of infinite series, and 
a very useful theorem is that if the sequence of partial sums of a series converges, then the 
infinite series also converges. In math notation,  

<𝑎!

#

!%&

	𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠	𝑡𝑜	𝑆	𝑖𝑓	 lim
!→#

𝑆! = 𝑆,	 

𝑖𝑛	𝑤ℎ𝑖𝑐ℎ	𝑐𝑎𝑠𝑒	𝑤𝑒	𝑠𝑎𝑦	𝑆 = <𝑎!

#

!%&

.	 

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑡ℎ𝑒	𝑠𝑒𝑟𝑖𝑒𝑠	diverges	(𝑅𝑜𝑔𝑎𝑤𝑠𝑘𝑖	549). 
 
Convergent infinite series satisfy the following linearity property: 
 

 
(Rogawski 551). 

 
Formula for the sum of the first N terms of the geometric series ∑ 𝑐 ∗ 𝑟!#

!%' : 



 

𝑆( = 𝑐 + 𝑐𝑟 + 𝑐𝑟) + 𝑐𝑟*+. . . +𝑐𝑟( =
𝑐(1– 𝑟(+,)

1– 𝑟  
And the entire series (infinite sum): 

<𝑐 ∗ 𝑟!
#

!%'

= 𝑐 + 𝑐𝑟 + 𝑐𝑟) + 𝑐𝑟*+. . . =
𝑐
1– 𝑟	, 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑	 − 1 < 𝑟 < 1. 

If r, in the above case, has an absolute value greater than or equal to 1, then the infinite series 
diverges. 
 
One might have guessed the following result relating the convergence of sequences and the 
divergence of the associated series: If a sequence converges to anything other than 0, then the 
series you get from summing it all up must diverge. Mathematically,  

𝐼𝑓	 lim
!→#

𝑎! ≠ 0,					𝑡ℎ𝑒𝑛	<𝑎!

#

!%,

	diverges. 

 
Highlight 3: 10.3 Convergence of Series 

. 
This chapter gives a variety of tests to determine the convergence of a series. 
 

 
(Rogawski 561) 

This theorem translates the problem of determining the convergence of a series into the 
simpler problem of determining the convergence of a sequence. To every sequence 
corresponds a series, which is the sum of the terms of the sequence. But to every series 
corresponds another sequence, which is the rolling partial sums of the terms of the series. For 
example, we may have an original sequence,  
1, 2, 4, 8, 16, 32, … 
the corresponding series,  
1+2+4+8+16+32+… 
and the resultant sequence of partial sums,  
1, 3, 7, 15, 31, 63, … 
 
The above theorem works from the convergence of monotonic bounded sequences. Because 
we are limiting ourselves to series consisting entirely of positive terms, each subsequent 
partial sum must be larger than the last. Accordingly, the sequence of partial sums must 
monotonically increasing (always increasing). Thus, when we add the condition that the 
sequence of partial sums is bounded above, then by the result at the end of 10.2, it must be 



 

that the sequence of partial sums converges. We also know that if a sequence of partial sums 
converges, it must also be the case that the infinite series in question converges.  
 

 
(Rogawski 561) 

This result is a consequence of the comparison test for convergence and divergence of 
improper integrals. When one considers the fact that the terms of the sequence {an} are just a 
subset of the function f(n), then one will see that the sequence {an} is always less than or 
equal to the function f(n) wherever it is defined. Accordingly, if the area under the function 
f(n) between 1 and ∞ converges to some value, then it must be the case than the “area under 
the sequence” (the sum of the sequence, i.e. the series) also converges, since the second area 
is bounded by the first. The reverse logic applies for the divergence of a series.  
 

 
(Rogawski 562) 

This result is interesting and useful in itself and may be used to prove the divergence of the 
harmonic series. Like the corresponding theorem for p-power integral convergence, this 
theorem can be used in conjunction with the integral test and with the following direct 
comparison test to prove the convergence or divergence of other series, even if they do not fit 
into the exact form ∑ ,

!!
#
!%,  . 

 

 
(Rogawski 563) 



 

This theorem corresponds to the direct comparison test for integrals. The result is intuitive 
enough. If each term in the first sequence is smaller than each term in the second sequence, 
and the second series converges, than the first series must also converge. The reverse logic 
applies for divergence. 
 

 
(Rogawski 564) 

The intuition in this theorem is to rearrange the limit statement 𝐿 = lim
!→#

-"
."

 to something 
more like 𝑎! ≈ 𝐿 ∗ 𝑏! for the L>0 case. Stated like this, one will see that ∑an is 
approximately a multiple of ∑bn, so it is natural to think that if one converges, then the other 
will also converge. If L=∞, then it must be that an is much larger than bn for large n. 
Accordingly, if ∑an converges, then ∑bn will also have to converge. Lastly, if L=0, then it 
must be that bn is much larger than an for large n. Accordingly, if ∑bn converges, then ∑an 
will also have to converge (Rogawski 565). 

             
 
 

Check Your Learning 
 
1. Determine the limit or state the divergence of the sequence 𝑎! =

/"

)"
 . 

(Rogawski 547) 
2. Find the sum or state the divergence of the series ∑ 0+)"

1"
#
!%' 	. 

(Rogawski 558) 
3. Use the Direct Comparison Test to show divergence/convergence of ∑ ,

!#/%+)"
#
!%, 	. 

(Rogawski 567) 
             

 
Things you may Struggle With 

 
1. Sequences and Functions- One will note the striking similarity between the convergence 
properties of functions and those of sequences. This is because sequences technically are 
functions; they are just functions that are defined on a discrete domain rather than on the 
continuous real number line. Thus, there is nothing new in chapter 10.1; this chapter simply 
states special cases of more general functional convergence theorems.  
 



 

2. Symbols vs. Intuition- All the tests in the convergence chapter are intuitive. Mathematical 
symbols do not always convey the right intuition, so focus instead on their geometric 
meaning. Draw pictures. Plot the sequences to be summed and the functions to be integrated. 
Depending on whether one is asked to prove convergence or divergence, the picture drawn 
will help one recognize what kind of sequence/function will be useful for a comparison test. 
 

Thanks for checking out these weekly resources! 
Don’t forget to check out our website for group tutoring times, video tutorials and lots of 
other resources: www.baylor.edu/tutoring ! Answers to check your learning questions are 

below! 
             

 
 

Answers to Check Your Learning 
 
1. Diverges 
 
2. 𝑆 = *1

*
 

 
3. ,

!#/%+)"
≤ _,

)
`
!

, so the series converges. 
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