Week 10
 MTH-1322 - Calculus 2

Hello and Welcome to the weekly resources for MTH-1322 - Calculus 2!
This week is Week 10 of class, and typically in this week of the semester, your professors are covering these topics below. If you do not see the topics your particular section of class is learning this week, please take a look at other weekly resources listed on our website for additional topics throughout of the semester.

We also invite you to look at the group tutoring chart on our website to see if this course has a group tutoring session offered this semester.

If you have any questions about these study guides, group tutoring sessions, private 30 minute tutoring appointments, the Baylor Tutoring YouTube channel or any tutoring services we offer, please visit our website www.baylor.edu/tutoring or call our drop in center during open business hours. M-Th 9am-8pm on class days 254-710-4135.

Keywords: Sequence, Convergence, Divergence, Squeeze Theorem, Bounded, Monotonic, Partial Sum, Linearity, Geometric Series, p-Series, Comparison Test, Algebraic Limit Laws

Topic of the Week: Sequences and Series

Contents:
Highlight: 10.1 Sequences
Highlight: 10.2 Infinite Series
Highlight: 10.3 Convergence of Series
Check your Learning
Things you may Struggle With
Answers to Check your Learning
References

Highlight 1: 10.1 Sequences

"A sequence $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ is an ordered collection of numbers defined by a function on a set of sequential integers. The values of $\mathrm{a}_{\mathrm{n}}=\mathrm{f}(\mathrm{n})$ are called the terms of the sequence, and n is called the index" (Rogawski 537). One can also just think of a sequence as a list. A sequence can be finite, if it only contains a finite number of terms, or infinite if it goes on forever.

A sequence is said to converge to a limit L if, generally speaking, the further out one gets in the sequence, the closer the terms get to L . This concept of convergence is almost identical to the concept of the convergence of a function to a horizontal asymptote. The mathematical notations for this are

$$
\lim _{n \rightarrow \infty} a_{n}=L \quad \text { or } \quad a_{n} \rightarrow L
$$

If, for a given sequence, such a limit L exists, the sequence is said to converge. If no such L exists, the sequence is said to diverge.

It is commonplace that the most natural way to specify the terms of a sequence is with a function $a_{n}=f(n)$. In this case, the difference between the sequence and the function is that the function is defined on it's entire (real) range, while the sequence is only defined on discrete, counting values of n. Intuitively, if the function converges to some asymptote, the sequence also converges to that value:

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{x \rightarrow \infty} f(x)
$$

The usefulness of this seemingly obvious statement is that all of one's tools for functional convergence translate directly over to sequences: convergence tests, comparison tests, and the like.

A special type of sequence is the geometric sequence, which is any sequence in the form $a_{n}=c * r^{n}$. The rules for convergence of a geometric sequence are as follows:

$$
\lim _{n \rightarrow \infty} c * r^{n}=\left\{\begin{array}{ccc}
0 & \text { if } & 0 \leq r<1 \\
c & \text { if } & r=1 \\
\infty & \text { if } & r>1
\end{array}\right.
$$

The Squeeze Theorem translates to sequences, as do the algebraic limit laws:

THEOREM 2 Limit Laws for Sequences Assume that $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are convergent sequences with

$$
\lim _{n \rightarrow \infty} a_{n}=L, \quad \lim _{n \rightarrow \infty} b_{n}=M
$$

Then
(i) $\lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=\lim _{n \rightarrow \infty} a_{n} \pm \lim _{n \rightarrow \infty} b_{n}=L \pm M$
(ii) $\lim _{n \rightarrow \infty} a_{n} b_{n}=\left(\lim _{n \rightarrow \infty} a_{n}\right)\left(\lim _{n \rightarrow \infty} b_{n}\right)=L M$
(iii) $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}}=\frac{L}{M} \quad$ if $M \neq 0$
(iv) $\lim _{n \rightarrow \infty} c a_{n}=c \lim _{n \rightarrow \infty} a_{n}=c L \quad$ for any constant c
(Rogawski 541).
It is also true that limits can commute with continuous functions, such that

$$
\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f\left(\lim _{n \rightarrow \infty} a_{n}\right)=f(L)
$$

A sequence is said to be bounded from above if there is some single number that is greater than every number in the sequence. A sequence is said to be bounded from below if there is some single number that is less than every number in the sequence. A sequence is simply called bounded if it is bounded from above and from below, and a sequence is called unbounded if it is not bounded. It is easy to prove boundedness from convergence. But we are
often interested in proving convergence, and to prove convergence from boundedness, we need another concept: monotonicity.

A monotonic increasing sequence is one who's terms are always increasing. A monotonic decreasing sequence is one who's terms are always decreasing.

If $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ is bounded above by M and is increasing monotonic, then $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ converges and $\lim _{n \rightarrow \infty} a_{n} \leq M$. If $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ is bounded below by m and is decreasing monotonic, then $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ converges and $\lim _{n \rightarrow \infty} a_{n} \geq m$ (Rogawski 544).

Highlight 2: 10.2 Infinite Series

A series is the sum of a sequence. Where a sequence might look like this
$1,2,4,8,16,32,64, \ldots$
a series will look like this
$1+2+4+8+16+32+64+\ldots$
Typically, the series that interest us in mathematics are infinite, meaning they consist in a sum of an infinite number of terms. We call the $n^{\text {th }}$ partial sum $\left(\mathrm{S}_{\mathrm{n}}\right)$ of an infinite series the sum of the first n terms. For example, the $4^{\text {th }}$ partial sum of the above series is $\mathrm{S}_{4}=1+2+4+8=15$. We are often interested in proving the convergence of infinite series, and a very useful theorem is that if the sequence of partial sums of a series converges, then the infinite series also converges. In math notation,

$$
\begin{aligned}
& \sum_{n=k}^{\infty} a_{n} \text { converges to } S \text { if } \lim _{n \rightarrow \infty} S_{n}=S \\
& \quad \text { in which case we say } S=\sum_{n=k}^{\infty} a_{n} .
\end{aligned}
$$

Otherwise, the series diverges (Rogawski 549).
Convergent infinite series satisfy the following linearity property:

THEOREM 1 Linearity of Infinite Series If $\sum a_{n}$ and $\sum b_{n}$ converge, then $\sum\left(a_{n}+b_{n}\right), \sum\left(a_{n}-b_{n}\right)$, and $\sum c a_{n}$ also converge, the latter for any constant c. Furthermore,

$$
\begin{aligned}
\sum\left(a_{n}+b_{n}\right) & =\sum a_{n}+\sum b_{n} \\
\sum\left(a_{n}-b_{n}\right) & =\sum a_{n}-\sum b_{n} \\
\sum c a_{n} & =c \sum a_{n} \quad(c \text { any constant })
\end{aligned}
$$

$$
S_{N}=c+c r+c r^{2}+c r^{3}+\ldots+c r^{N}=\frac{c\left(1-r^{N+1}\right)}{1-r}
$$

And the entire series (infinite sum):

$$
\sum_{n=0}^{\infty} c * r^{n}=c+c r+c r^{2}+c r^{3}+\ldots=\frac{c}{1-r}, \text { provided }-1<r<1
$$

If r, in the above case, has an absolute value greater than or equal to 1 , then the infinite series diverges.

One might have guessed the following result relating the convergence of sequences and the divergence of the associated series: If a sequence converges to anything other than 0 , then the series you get from summing it all up must diverge. Mathematically,

$$
\text { If } \lim _{n \rightarrow \infty} a_{n} \neq 0, \quad \text { then } \sum_{n=1}^{\infty} a_{n} \text { diverges. }
$$

Highlight 3: 10.3 Convergence of Series

This chapter gives a variety of tests to determine the convergence of a series.

THEOREM 1 Partial Sum Theorem for Positive Series If $\sum_{n=1}^{\infty} a_{n}$ is a positive series, then either

(i) The partial sums S_{N} are bounded above. In this case, $\sum_{n=1}^{\infty} a_{n}$ converges. Or,
(ii) The partial sums S_{N} are not bounded above. In this case, $\sum_{n=1}^{\infty} a_{n}$ diverges.
(Rogawski 561)
This theorem translates the problem of determining the convergence of a series into the simpler problem of determining the convergence of a sequence. To every sequence corresponds a series, which is the sum of the terms of the sequence. But to every series corresponds another sequence, which is the rolling partial sums of the terms of the series. For example, we may have an original sequence,
$1,2,4,8,16,32, \ldots$
the corresponding series,
$1+2+4+8+16+32+\ldots$
and the resultant sequence of partial sums, $1,3,7,15,31,63, \ldots$

The above theorem works from the convergence of monotonic bounded sequences. Because we are limiting ourselves to series consisting entirely of positive terms, each subsequent partial sum must be larger than the last. Accordingly, the sequence of partial sums must monotonically increasing (always increasing). Thus, when we add the condition that the sequence of partial sums is bounded above, then by the result at the end of 10.2 , it must be
that the sequence of partial sums converges. We also know that if a sequence of partial sums converges, it must also be the case that the infinite series in question converges.

THEOREM 2 Integral Test Let $a_{n}=f(n)$, where f is a positive, decreasing, and continuous function of x for $x \geq 1$.
(i) If $\int_{1}^{\infty} f(x) d x$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.
(ii) If $\int_{1}^{\infty} f(x) d x$ diverges, then $\sum_{n=1}^{\infty} a_{n}$ diverges.
(Rogawski 561)
This result is a consequence of the comparison test for convergence and divergence of improper integrals. When one considers the fact that the terms of the sequence $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ are just a subset of the function $f(n)$, then one will see that the sequence $\left\{a_{n}\right\}$ is always less than or equal to the function $f(n)$ wherever it is defined. Accordingly, if the area under the function $\mathrm{f}(\mathrm{n})$ between 1 and ∞ converges to some value, then it must be the case than the "area under the sequence" (the sum of the sequence, i.e. the series) also converges, since the second area is bounded by the first. The reverse logic applies for the divergence of a series.

THEOREM 3 Convergence of p-Series The infinite series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges if $p>1$ and diverges otherwise.
(Rogawski 562)
This result is interesting and useful in itself and may be used to prove the divergence of the harmonic series. Like the corresponding theorem for p-power integral convergence, this theorem can be used in conjunction with the integral test and with the following direct comparison test to prove the convergence or divergence of other series, even if they do not fit into the exact form $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$.

THEOREM 4 Direct Comparison Test

Assume that there exists $M>0$ such that $0 \leq a_{n} \leq b_{n}$ for $n \geq M$.
(i) If $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ also converges.
(ii) If $\sum_{n=1}^{\infty} a_{n}$ diverges, then $\sum_{n=1}^{\infty} b_{n}$ also diverges.

This theorem corresponds to the direct comparison test for integrals. The result is intuitive enough. If each term in the first sequence is smaller than each term in the second sequence, and the second series converges, than the first series must also converge. The reverse logic applies for divergence.

THEOREM 5 Limit Comparison Test Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be positive sequences. Assume that the following limit exists:

$$
L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}
$$

- If $L>0$, then $\sum a_{n}$ converges if and only if $\sum b_{n}$ converges.
- If $L=\infty$ and $\sum a_{n}$ converges, then $\sum b_{n}$ converges.
- If $L=0$ and $\sum b_{n}$ converges, then $\sum a_{n}$ converges.
(Rogawski 564)
The intuition in this theorem is to rearrange the limit statement $L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$ to something more like $a_{n} \approx L * b_{n}$ for the $\mathrm{L}>0$ case. Stated like this, one will see that $\sum \mathrm{a}_{\mathrm{n}}$ is approximately a multiple of $\sum b_{n}$, so it is natural to think that if one converges, then the other will also converge. If $L=\infty$, then it must be that a_{n} is much larger than b_{n} for large n. Accordingly, if $\sum \mathrm{a}_{\mathrm{n}}$ converges, then $\sum \mathrm{b}_{\mathrm{n}}$ will also have to converge. Lastly, if $\mathrm{L}=0$, then it must be that b_{n} is much larger than a_{n} for large n. Accordingly, if $\sum b_{n}$ converges, then $\sum a_{n}$ will also have to converge (Rogawski 565).

Check Your Learning

1. Determine the limit or state the divergence of the sequence $a_{n}=\frac{e^{n}}{2^{n}}$.
(Rogawski 547)
2. Find the sum or state the divergence of the series $\sum_{n=0}^{\infty} \frac{8+2^{n}}{5^{n}}$.
(Rogawski 558)
3. Use the Direct Comparison Test to show divergence/convergence of $\sum_{n=1}^{\infty} \frac{1}{n^{1 / 3}+2^{n}}$.
(Rogawski 567)

Things you may Struggle With

1. Sequences and Functions- One will note the striking similarity between the convergence properties of functions and those of sequences. This is because sequences technically are functions; they are just functions that are defined on a discrete domain rather than on the continuous real number line. Thus, there is nothing new in chapter 10.1 ; this chapter simply states special cases of more general functional convergence theorems.
2. Symbols vs. Intuition- All the tests in the convergence chapter are intuitive. Mathematical symbols do not always convey the right intuition, so focus instead on their geometric meaning. Draw pictures. Plot the sequences to be summed and the functions to be integrated. Depending on whether one is asked to prove convergence or divergence, the picture drawn will help one recognize what kind of sequence/function will be useful for a comparison test.

Thanks for checking out these weekly resources!
Don't forget to check out our website for group tutoring times, video tutorials and lots of other resources: www.baylor.edu/tutoring ! Answers to check your learning questions are below!

Answers to Check Your Learning

1. Diverges
2. $S=\frac{35}{3}$
3. $\frac{1}{n^{1 / 3}+2^{n}} \leq\left(\frac{1}{2}\right)^{n}$, so the series converges.

References
Rogawski, Jon, et al. Calculus: Early Transcendentals. W.H. Freeman, Macmillan Learning, 2019.

