
 

Week 12 
MTH-1322 – Calculus 2 

 
Hello and Welcome to the weekly resources for MTH-1322 – Calculus 2! 

  
This week is Week 12 of class, and typically in this week of the semester, your 
professors are covering these topics below.  If you do not see the topics your particular 
section of class is learning this week, please take a look at other weekly resources listed on 
our website for additional topics throughout of the semester.  
  
We also invite you to look at the group tutoring chart on our website to see if this course 
has a group tutoring session offered this semester.  
  
If you have any questions about these study guides, group tutoring sessions, private 30 
minute tutoring appointments, the Baylor Tutoring YouTube channel or any tutoring services 
we offer, please visit our website www.baylor.edu/tutoring or call our drop in center during 
open business hours. M-Th 9am-8pm on class days 254-710-4135. 
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Highlight: 10.6 Power Series 
 
In mathematics, there is a special class of series called power series. A power series is a 
series whose terms take the form of some power of x, and the powers of x increase with the 
index of the series. In math notation, a power series is given in its general form: 

𝐹(𝑥) = &𝑎!(𝑥– 𝑐)!
"

!#$

= 𝑎% + 𝑎$(𝑥– 𝑐) + 𝑎&(𝑥– 𝑐)& + 𝑎'(𝑥– 𝑐)' +⋯ 

 
In this statement of a power series, an allowance is made for the series to be “off-center” by 
the fixed distance “c” (Rogawski 580). A power series may converge sometimes and diverge 
other times depending on the value one sets for x. The range of values of x for which the 
series converges is called the interval of convergence. The interval of convergence takes the 
form of 𝑐 ± 𝑅, where R is some length, called the radius of convergence. The form of this 
interval derives from the fact that the constant “c” is the center of the power series.  
 



 

Every power series is said to have such a radius of convergence R. The series converges 
absolutely when |𝑥– 𝑐| < 𝑅 and diverges when |𝑥– 𝑐| > 𝑅. In other words, if R is infinite, the 
series converges absolutely for all values of x (Rogawski 581).  
 
For example, what is the radius of convergence of ∑ (!

&!
"
!#%  ? Applying the ratio test,  
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Setting up the criterion for convergence using the ratio test,  
 

𝜌 =
1
2
|𝑥| < 1 ⟹ |𝑥| < 2 

 
In other words, the series converges whenever the x is between -2 and 2. Therefore, 2 is the 
radius of convergence (Rogawski 582).  
 
A subset of power series are geometric series, that is, series for which consecutive terms 
always form the same ratio. One will recall the famous theorem concerning geometric series 
from algebra: 

&𝑥!
"

!#%

=
1
1– 𝑥	, 𝑓𝑜𝑟	|𝑥| < 1 

 
This formula can be used both forwards and backwards — that is, either for evaluating a 
geometric series or for translating a rational function into the form of a geometric series.  
 
Power series are of interest to mathematicians because, as it turns out, many functions can be 
defined alternatively as a power series expansion (sinusoidal, exponential, logarithmic). In 
fact, some functions are only definable as infinite series. The advantage to treating of 
functions as series is that it is often easier to work with a sum of powers of x than with one 
complex function. Thus, power series are a tool for simplifying functions to a form we can 
manipulate. 
 
For instance, one common application of power series is to differentiate or integrate functions 
that would be difficult to deal with otherwise. The basic principle is as follows: One can 
differentiate a function simply by doing term-by-term differentiation on the power series 
expansion of said function. The same applies for integration. The advantage of such a 
technique is that it is very easy to differentiate/integrate powers of x and sums of those 
powers.  
 
A formal statement of term-by-term differentiation and integration is (Rogawski 584) 
 



 

 
The meaning of term-by-term is that one simply integrates each term of the series expansion 
of the function. This sounds like more work, but one is really only integrating one term, the 
general form of all terms. The enormous utility of this approach lies in the fact that every 
function can be expressed as a power series expansion. The implication is that the problem of 
integrating any function can be reduced to the far simpler problem of integrating a 
polynomial.  
 
Term-by-term integration is useful not only for finding exact mathematical formulas but also 
for getting quick, approximate results. These are obtained by taking a partial sum of the terms 
of the power series expansion of the function. One can take as large or as small a partial sum 
as one’s tolerance for inaccuracy will permit.  
 
A sophisticated implementation of these several principles is found in the following example.  
 
Suppose we are asked to prove the following, for |𝑥| < 1,  

𝑡𝑎𝑛+$𝑥 = &
(−1)!𝑥&!*$

2𝑛 + 1

"

!#%

= 𝑥	–
𝑥'

3 +
𝑥,

5 –
𝑥-

7 +
𝑥.

9 –… 

 
Remember from the section on trigonometric integrals that  

𝑡𝑎𝑛+$𝑥 = H
𝑑𝑥

1 + 𝑥& 

 
We prepare to take advantage of the formula for the sum of a geometric series by 
manipulating the integrand ever so slightly 

1
1 + 𝑥& =

1
1– (−𝑥&) 

 
Now, applying the formula for the sum of a geometric series, backwards,  

1
1– (−𝑥&) = &(−𝑥&)!

"

!#$

= 1– 𝑥& + 𝑥/– 𝑥0 +⋯ 

 
Now, taking advantage of the fact that we may integrate a function by integrating its power 
series expansion, we can put all of the above pieces together: 
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𝑑𝑥
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𝑑𝑥
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"
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9 –… 

Which was to be demonstrated (Rogawski 585).  
 
A common method in the field of differential equations is to express the functional solution 
as a power series. This method works by taking advantage of the aforementioned easy 
differentiation and integration of power series. I recommend this video for an example of 
how to use power series to solve a differential equation encountered earlier in the course. 
 
For your reference, the power series expansion of the exponential function is included below. 
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Check Your Learning 
 
1. Find the interval of convergence of ∑ 𝑛𝑥!"

!#%  (Rogawski 589). 
 
2. Explain how one might prove that for |x| < 1, ∫ 1(

("*$
= 𝐶 + 	𝑥– (

#

,
+ ($

.
– (

%&

$'
+⋯ 

             
 

Things you may Struggle With 
 
1. Relation to previous chapters– A power series is just one particular type of infinite series. \ 
All the techniques for determining convergence from previous chapters apply to power series 
as well. It is not uncommon that you will need to use the ratio or root test in order to find the 
interval of convergence for a power series. 
 
2. Interval of convergence– The mental picture corresponding to the radius of convergence is 
the following: 

 
(Rogawski 581) 

Observe that the power series diverges for all values of x that do not fall within a radius R of 
the center “c.” Of course, here also lies the intuition of why an infinite R implies convergence 
for all values of x. If one wishes to know whether the power series converges at the endpoints 
of the interval, one will need to actually plug in each value to test convergence. 
 

Thanks for checking out these weekly resources! 



 

Don’t forget to check out our website for group tutoring times, video tutorials and lots of 
other resources: www.baylor.edu/tutoring ! Answers to check your learning questions are 

below! 
             

 
 

Answers to Check Your Learning 
 
1. (-1, 1) 
 
2. Manipulate the integrand to the form $

$–3
 . Apply the formula for the sum of a geometric 

series. Integrate term-by-term. 
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