
 

Week 13 
MTH-1322 – Calculus 2 

 
Hello and Welcome to the weekly resources for MTH-1322 – Calculus 2! 

  
This week is Week 13 of class, and typically in this week of the semester, your 
professors are covering these topics below.  If you do not see the topics your particular 
section of class is learning this week, please take a look at other weekly resources listed on 
our website for additional topics throughout of the semester.  
  
We also invite you to look at the group tutoring chart on our website to see if this course 
has a group tutoring session offered this semester.  
  
If you have any questions about these study guides, group tutoring sessions, private 30 
minute tutoring appointments, the Baylor Tutoring YouTube channel or any tutoring services 
we offer, please visit our website www.baylor.edu/tutoring or call our drop in center during 
open business hours. M-Th 9am-8pm on class days 254-710-4135. 

             
 
Keywords: Approximation, Agreement to Order n, Taylor Polynomial, Centeredness, 
Maclaurin Polynomial, Error Bound 
 

Topic of the Week: Taylor Polynomials 
 
Contents: 
Highlight: 10.7 Taylor Polynomials 
Check your Learning 
Things you may Struggle With 
Answers to Check your Learning 
References 

             
 

Highlight: 10.7 Taylor Polynomials 
 
In the last chapter, we examined power series — infinite series whose terms consist of ever-
increasing powers of x. In this chapter we will consider a modification on power series: 
Taylor polynomials.  
 
Before we define what a Taylor polynomial is, it is necessary to establish some vocabulary. 
First, you may be familiar with the concept that one can approximate one function with a 
simpler function. Approximations are only good around a point. For example, for points 
within a narrow radius of zero, y = sin(x) can be very well approximated by the line y = x. 
However, outside of that narrow window, y = x is a horrible approximation for y = sin(x). 
Loosely speaking, we call the point in the middle of that radius of approximation the center, 
and we say that the approximation is centered at that point (zero in our example). 
 
What makes one approximation better than another? One criterion is to count how many 
derivatives of the approximation agree with the corresponding derivatives of the function to 



 

be approximated. When the first n derivatives of the approximation, evaluated at the center, 
are equal to the first n derivatives of the function to be approximated, evaluated at the center, 
we say that the original function and its approximation agree to order n and that the 
approximation approximates the original function to order n (Rogawski 592).  
 
We are now ready to define a Taylor polynomial. For a given function f, and a value in its 
domain “a,” a Taylor polynomial is a series of the following form (Rogawski 593): 
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What can we say about the Taylor polynomial? First, note that this series is finite; it stops at 
“n.” Because these n + 1 terms of the Taylor polynomial are constructed using the derivatives 
of f, one might suspect that, using our previous definition, a Taylor polynomial agrees with f 
to order n. This intuition would be correct. We also say that a Taylor polynomial 
approximates f to order n at “a.” In this case, “a” is the center of the approximation: the point 
around which the approximation is valid, within a radius. On this note, we call a Taylor 
polynomial a Maclaurin polynomial when a = 0 (Rogawski 593).  
 
Let’s consider an example. What Maclaurin polynomial (Taylor polynomial centered at 0) 
approximates the exponential function to order 5? We need the first 5 derivatives of the 
exponential function, each evaluated at zero. The slope of ex at 0 is 1, and all subsequent 
derivatives of ex are just ex again. Therefore, the first 5 derivatives of the exponential function 
are each 1. Therefore, the 5th order Maclaurin approximation is as follows: 
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Notice that the derivative factors just become implied 1s, and the centeredness at zero causes 
the (x – a) terms to just become x, and all of a sudden, the Taylor approximation looks very 
similar to the series expansion for ex you may have learned in algebra or calculus 1. 
 
Taylor polynomials are of computational use, because they reduce the problem of finding the 
value of a complicated function to finding the value of a simpler function, as evidenced in the 
exponential case above.  
 
The process for finding the nth order Taylor polynomials for the natural logarithm, square 
root, and trigonometric functions is very similar. Essentially, as long as we can calculate 
derivatives, we can get Taylor polynomial approximations of any order we desire. 
 



 

 
Observe the visualization of Maclaurin polynomial approximations of the cosine function of 
various orders (Rogawski 596). Notice that with higher orders, the radius on which the 
approximation is valid expands. Notice also that it takes a lot of terms to expand the radius of 
approximation very far. Even with 10 terms in our series approximation, we cannot 
accurately approximate cosine outside the (-3π/2, 3π/2) window. This behavior is typical of 
Taylor polynomial approximations. It should serve as a reminder not to get carried away with 
one’s approximations and to remember that an approximation is only valid within a specific 
radius, outside of which it is ludicrous. 
 
|𝑓(𝑥)	–	𝑇!(𝑥)| is the error of the Taylor polynomial approximation. If we know of a K such 
that 6𝑓(!*+)(𝑢)6 ≤ 𝐾, ∀	𝑢 ∈ 	 [𝑎, 𝑥], then we can put the following bound on the error 
(Rogawski 596): 
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For example, suppose we are asked to find a bound on the error of the 3rd order Taylor 
polynomial approximation, centered at 1, of the natural logarithm at 1.5 (Rogawski 596). We 
will not actually need to construct the Taylor polynomial, as the error bound formula does 
not require it. We will, however, need the fourth derivative of the natural logarithm. As 
requested, we will take a = 1 as our center. 
 
The fourth derivative of ln(x) is -6x-4, the absolute value of which is 6x-4. This function is 
decreasing on the range [1, 1.5]. Accordingly, we take 6(1)-4 = 6 as our K, which is always 
greater than the absolute value of the fourth derivative on the range [1, 1.5]. The pieces of the 
error bound formula are coming together. Observe 
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Check Your Learning 
 



 

1. Find the Taylor polynomial centered at 0 to order 3 to approximate tan(x) (Rogawski 600). 
 
2. For 𝑓(𝑥) = 𝑒,' and 𝑇$(𝑥) = 1	– 	𝑥 + '!
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0 (Rogawski 601). 
             

 
Things you may Struggle With 

 
1. Attention to detail- When dealing with Taylor polynomials, it is very easy to mistake an 
nth derivative for a power, reverse a sign, or drop a factorial. Every symbol in the definition 
of the Taylor polynomial is crucial to its meaning, so it is important that one write every mark 
intentionally and with understanding. 
 
2. Evaluating derivatives- There is an important difference between evaluating a derivative at 
a particular point and differentiating a function evaluated at a particular point. This chapter 
calls for the former. We must, at first, leave variables as they are and differentiate, only 
plugging in concrete values at the end. In other words, we can’t skip the hard work of 
differentiating. We will likely get the wrong answer if we plug in concrete values first and 
then try to differentiate.  
 

Thanks for checking out these weekly resources! 
Don’t forget to check out our website for group tutoring times, video tutorials and lots of 
other resources: www.baylor.edu/tutoring ! Answers to check your learning questions are 

below! 
             

 
 

Answers to Check Your Learning 
 
1. 𝑇$(𝑥) = 𝑥 + '"
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2. .
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𝑒,' = 𝑒,' . Since 𝑒,' is decreasing for all 𝑥 ≥ 0, 𝐾 = 𝑒/ = 1. Therefore, a bound for 
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