
 

Week 14 
MTH-1322 – Calculus 2 

 
Hello and Welcome to the weekly resources for MTH-1322 – Calculus 2! 

  
This week is Week 14 of class, and typically in this week of the semester, your 
professors are covering these topics below.  If you do not see the topics your particular 
section of class is learning this week, please take a look at other weekly resources listed on 
our website for additional topics throughout of the semester.  
  
We also invite you to look at the group tutoring chart on our website to see if this course 
has a group tutoring session offered this semester.  
  
If you have any questions about these study guides, group tutoring sessions, private 30 
minute tutoring appointments, the Baylor Tutoring YouTube channel or any tutoring services 
we offer, please visit our website www.baylor.edu/tutoring or call our drop in center during 
open business hours. M-Th 9am-8pm on class days 254-710-4135. 
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Highlight: 10.8 Taylor Series 
 
The concept of a Taylor polynomial from the last chapter can be expanded into the concept of 
a Taylor series. A Taylor series is simply a Taylor polynomial with an infinite number of 
terms. In other words,  
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Like in the case of Taylor polynomials, we use “Maclaurin” to denote a Taylor series 
centered at 0 (that is c = 0). As it turns out, it can be proved that if a function can be 
expressed by a power series, then that series must have the above form (Rogawski 603). 
Furthermore, so long as a function is infinitely differentiable at some point, it has a Taylor 
series expansion at that point. Not every function falls into this category, but it does include 
the vast majority of the functions we deal with in lower math and in everyday life.  
 



 

We may state this result formally as follows

 
(Rogawski 603). 

In plain English, this theorem means that, on a given interval, so long as f is infinitely 
differentiable, and the higher derivatives of f stay finite, then f is equal to its Taylor series 
expansion. This statement is only true at the values of x in the prespecified interval, but for 
many important functions (square root, trigonometric, exponential, logarithmic) this interval 
can be made arbitrarily large. The effect, therefore, is that we can represent most of the 
functions we are interested in with a Taylor series expansion.  
 
For example, what is a Maclaurin series expansion for the sine function? Well, the first, 
second, third, and fourth derivatives of sine are cosine, -sine, -cosine, and sine, after which 
the cycle repeats. Evaluated at 0 (as they are for a Maclaurin series), these derivatives come 
to 1, 0, -1, and 0, and the pattern continues for higher orders. The alternating 0s cause the 
even-powered terms of the series to disappear, so the remaining terms form the following 
Maclaurin series expansion for sine:  
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Now, since all of sine’s derivatives are either cosine, -sine, -cosine, or sine, they are all 
bounded by K = 1. Therefore, by the above theorem, we can say that sin(x) = T(x) for all x on 
(-R, R). But since we never specified an R, and because sine is differentiable on its entire 
domain, we can choose any R we like. In short, the sin(x) = T(x) for all x (Rogawski 605).  
 
Once you know the Taylor series for one function, it is often possible to find the Taylor 
series for another, related function. For example, if one knows the Taylor series for ex, one 
can easily find the Taylor series for 𝑒,-!, simply by substituting in -x2 for x in every term of 
the original series (Rogawski 606).  
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As with Taylor polynomials, if it’s hard to integrate the original function, we can just 
integrate the Taylor series expansion instead. If a function is equal to its Taylor series 
expansion, it is possible to get an exact result for the antiderivative just from integrating its 
Taylor series.  
 
We can combine the above two principles to integrate functions for which there appears to be 
no analytic solution. For example, what is the area under the curve sin(x2) between 0 and 1? 
 



 

Remember that  
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So,  
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What’s more, we can put a bound on our error using the error bound formula as follows: It 
must be the case that  
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Thus, we can say, with a percentage error less than 0.005% that  
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(Rogawski 607). 
A special series to figure out the coefficients of a binomial expansion is as follows,  
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The Taylor series of sine, cosine, and the exponential function are also used to prove Euler’s 
formula for all complex numbers z: 

𝑒45 = 𝑐𝑜𝑠(𝑧) + 𝑖	𝑠𝑖𝑛(𝑧) 
 
In other words, with Taylor series, it even becomes easy to deal with something so abstract as 
exponentiating to complex powers (Rogawski 611). Evaluated at z = π, this formula turns 
into the following famous identity: 

𝑒64 + 1 = 0 
             

 
 

Check Your Learning 
 
1. Prove that 7

7-
𝑠𝑖𝑛(𝑥) = 𝑐𝑜𝑠(𝑥) using Taylor series. 

 
2. Find the Maclaurin series for ln(1 - x2) and state where it is valid (Rogawski 613). 

             
 

Things you may Struggle With 
 
1. Integrating/Differentiating series- It is often necessary to integrate or differentiate an 
infinite Taylor series term-by-term to arrive at a solution. Of course, we do not actually 
integrate every term in the series, since that would take forever. Instead, we integrate the 
form of every term in the series, which will include n as an index. n looks like a variable, but 
it is important that when integrating term-by-term, we treat the index n as a constant, using x 
as our variable of integration, just like we did in the sin(x2) example. 



 

 
2. Multiplying series- One can sometimes figure out what the product of two series will look 
like, just by multiplying the first few terms using FOIL. In this event, if one wants to get a 
glimpse at the terms of the product series up to, say degree 5, one should FOIL out the two 
series, throwing out terms that result in a power of x greater than 5. Combining like terms 
algebraically, the result is the beginning of the Taylor series expansion of the product. 
 

Thanks for checking out these weekly resources! 
Don’t forget to check out our website for group tutoring times, video tutorials and lots of 
other resources: www.baylor.edu/tutoring ! Answers to check your learning questions are 

below! 
             

 
 

Answers to Check Your Learning 
 
1. 

𝑑
𝑑𝑥 𝑠𝑖𝑛

(𝑥) =
𝑑
𝑑𝑥.

(−1)$

(2𝑛 + 1)! 𝑥
"$21

&

$'(

= .
(−1)$

(2𝑛 + 1)!
𝑑
𝑑𝑥 𝑥

"$21
&

$'(

= .
(−1)$

(2𝑛 + 1)!
(2𝑛 + 1)𝑥"$

&

$'(

= .
(−1)$

(2𝑛)! 𝑥
"$

&

$'(

= 𝑐𝑜𝑠(𝑥) 

 
2.  
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	𝑜𝑛	𝑡ℎ𝑒	𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙	(−1, 1) 
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