This week is the last week of class, and typically in this week (and the surrounding weeks of class) you are reviewing for the final exam. Please use the review below (as well as other resources from the semester) as a general overview of some of the key concepts taught in the course! Please take a look at all 12 weekly resources listed on our website, as well as the math content review, to help you review for the final exam!

If you have any questions about these study guides, the final schedule of group tutoring sessions, private 30 minute tutoring appointments, the Baylor Tutoring YouTube channel or any tutoring services we offer, please visit our website www.baylor.edu/tutoring or call our drop in center during open business hours. M-Th 9am-8pm on class days 254-710-4135. The last day of tutoring in the drop in center will be the last day of class. To learn about additional resources available during Finals Week, please visit CASE in the West Wing basement of Sid Rich! Good luck on your final exam!

Section 1: Review of Conceptual Genetics

Chromosomes: **chromosomes** are bundles of DNA wrapped around proteins

- **Sister Chromatid:** 1 chromosome composed of 2 DNA strands joined at the centromere by **cohesin** proteins
- **Locus:** the specific point on a chromosome where a gene is located

Eukaryotes vs. Prokaryotes:
https://www.youtube.com/watch?v=RQ-SMCmWB1s

Cell Cycle: the cycle of cellular growth and division

- **Interphase:** the part of the cell cycle dedicated to growth/repair, metabolism, and DNA replication
- **M-Phase:** division of the nucleus
 - **Mitosis:** the division of a parent cell into two identical daughter cells
 \[(2n \rightarrow 2n) \rightarrow \text{Equational division}\]
Meiosis: The 2 divisions of a single diploid parent cell to 4 genetically *different* haploid daughters \((2n \rightarrow n)\)

Sources of Variation:
- **Random Alignment** of homologs in metaphase 1
- **Crossing Over** of homologs in prophase 1 (*chiasma*)

Meiosis 1: reductional division→ separates homologous pairs \((2n \rightarrow n)\)

Shugoshin prevents separase from lysing cohesins in sister chromatids

Meiosis 2: equational division→ divides chromatids as in mitosis \((n \rightarrow n)\)

Mendelian Inheritance: the general pattern of heredity discovered by Gregor Mendel

Law of Segregation: each individual has 2 copies of an allele which code for a trait; these two alleles are separated (*Anaphase 1*) of gamete formation

Law of Independent Assortment: in a cross involving more than two genes, the alleles segregate independently of each other *(unless they are linked)*

Chromosomal Sex Determination: generally, most studied organisms display the X-Y system for sex determination, though several others exist

Sex Linked Gene: a gene located on a sex chromosome
- **X-Linked:** mother to child or father to child (dominant or recessive)
- **Y-Linked:** father to son only

Hemizygous: since males only carry one copy of the X-chromosome (or the Y), they are considered hemizygous (single allele carriers)

Genomic Imprinting: males and females have different patterns of methylation; for certain genes or structural mutations, whether they are inherited from the mother or father will determine the *phenotype* of the offspring.

Lyon Hypothesis: in all individuals with more than 1 X-chromosome, all but 1 will be *inactivated* (at random) → **Barr Body:** the remnant of an *inactivated* X chromosome

*note: some sex determining genes are not inactivated, so the ‘feminizing’ effect depends on X-chromosome dosage and whether or not there is an SRY gene

Chapter 6: Pedigrees (watch this short video!)

https://www.youtube.com/watch?v=Gd09V2AkZv4

Section 2: DNA and Chromosomal Structure and Discovery

Deoxyribonucleic Acid: DNA

Ribonucleic Acid: RNA

Nucleic Acid Structure → Chargaff’s Rules: the proportion of A&T and G&C are *equivalent* in DNA and the total proportions add up to 100%

Griffith’s Experiment:

All diagrams, tables and figures are the property of Benjamin A. Pierce; Genetics: A Conceptual Approach
Transforming Principle: some “transforming substance” had to have caused the change from the non-virulent to virulent *S. pneumoniae*… we now know this is **DNA**

Avery, MacLeod and McCarty Experiment: proved that DNA is the “transforming substance”; Used a modified version of Griffith’s experiment where digestive enzymes were applied to transformed bacteria

Watson and Crick’s Discovery of DNA’s 3D Structure: Watson, Crick and Franklin discovered DNA’s structure in 1953

Chromosomal Structure:

Chromatin: the complex of DNA and proteins

DNase Hypersensitive Site: sites where DNA is less tightly bound

Histones: proteins which associate with DNA (only in eukaryotes and some archaea)

- **Five Types:** H1, H2A, H2B, H2, H4

- **Nucleosome:** A DNA-histone complex which DNA wraps around (~146bp)
 - **Core Nucleosome:** an octamer (2 sets of) H2A, H2B, H3, H4
 - **H1 + Linker DNA:** H1 holds the DNA in place on the nucleosome and linker DNA (~50 bp) joins adjacent nucleosomes

Histones generally tend to express (+) charged residues (Lys, Arg) to attract the (-) charged phosphate backbone of DNA → adding methyl or acetyl groups decreases affinity of DNA for a histone

Section 3: The Central Dogma

Meselson-Stahl Experiment: Proved DNA replication is **semiconservative**

Stages of Replication:

- **Initiation**
- **Unwinding**
- **Elongation**

Enzymes:

<table>
<thead>
<tr>
<th>Eukaryotic</th>
<th>Prokaryotic</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA-pol α: has primase activity; creates RNA primer followed by a short stretch of DNA; DNA-pol δ: completes replication of the lagging strand; DNA-pol ε: replicates the leading strand; DNA ligase: joins the Okazaki fragments</td>
<td>DNA primase binds to helicase and forms RNA primers; DNA-pol I replaces RNA with DNA nucleotides (special exonuclease 5’-->3’); DNA-pol III catalyzes the addition of dNTPs to the growing strands of new DNA</td>
</tr>
</tbody>
</table>

All diagrams, tables and figures are the property of Benjamin A. Pierce; Genetics: A Conceptual Approach
Transcription (DNA → RNA)

Initiation
1. Promoter Recognition:
 a. The core enzyme of RNA-pol binds to the σ factor to form the RNA-pol holoenzyme. This allows the polymerase to bind
2. Formation of transcription bubble: RNA-pol holoenzyme begins to unravel DNA
3. Synthesize first bonds between rNTPs (note: the first nucleotide keeps all 3 phosphates)
4. Escape of Transcription apparatus from promoter: RNA-polymerase undergoes a change in shape that causes it to release σ and ‘escape’ the promoter to move downstream

Elongation
RNA-pol acts as a helicase to unwind downstream DNA and rewind upstream DNA; it also adds rNTPs complementary to the template/non-coding strand 5’ → 3’

Termination (once RNA-pol reaches the terminator)
Rho-Dependent Termination: a protein (rho) causes termination
Rho-Independent Termination: inverted repeats and/or poly-uracil stretches

RNA Processing:
- prevents degradation of mRNA and aids in Addition of 5’ Cap
- 3’-Cleavage and Polyadenylation
- Splicing: see diagram (right) snRNP = 1 snRNA + proteins → 5 snRNPs make up a spliceosome

Note: RNA processing may occur in Euk’s or Prok’s, but spliceosomal processing will only occur in eukaryotes.
Translation (RNA → Protein)

Translation: RNA is copied in the 5’ → 3’ direction to a protein in the N$_{\text{term}}$ → C$_{\text{term}}$ direction.

Codons: units of 3 nucleotides (5’→3’) which complimentary bind to a tRNA molecule corresponding to an amino acid (Review wobble rules (ch 15))

Section 4: Gene Regulation

Operons

- **Negative Inducible:** the regulator protein is translated in an inactive form, and then is allosterically activated
 - **Inducer:** molecule that binds to the allosteric site of the repressor, rendering it unable to bind to the operator [allosteric inhibition] (ex. lactose: *Lac operon*)
- **Negative Repressible:** the regulator protein active, then is allosterically inactivated
 - **Corepressor:** molecule that binds to the allosteric site of the repressor and activates it [allosteric activation] (ex. tryptophan: *Trp operon*)

Lac Operons: negative inducible operon

Prokaryotes need simple sugars to metabolize (create ATP/survive). When **lactose** (the substrate of the product of the *lac Z* gene) is cleaved by β-Gal, we produce glucose and galactose. The **lac operon** codes for genes that help lactose enter a cell and be cleaved

https://www.youtube.com/watch?v=EjRXz1xAdow

All diagrams, tables and figures are the property of Benjamin A. Pierce; Genetics: A Conceptual Approach
Chromatin Remodeling: Pushing histones out of the way in order to allow transcription machinery to bind or chemical modification → EUKARYOTES

<table>
<thead>
<tr>
<th>Acetylation of Histones:</th>
<th>Histone Methylation:</th>
<th>DNA Methylation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutralizes positive charge on histone side chains (lys and arg); DNA is less tightly wound (Acetyltransferase: add; Deacetylase: remove)</td>
<td>Can either repress or induce transcription (Methyltransferase: add/Demethylase: remove)</td>
<td>DNA methylation represses transcription because it attracts deacetylase enzymes (DNA to wraps more tightly) CpG islands: consensus sequences for methylation near promoters (cytosines are methylated)</td>
</tr>
</tbody>
</table>

Eukaryotic Initiation: rate is highly regulated by the interaction between TAPs and repressor proteins which act like a foot on and off the accelerator for the rate of basal transcription apparatus (BTA aka holoenzyme) assembly at the Core Promoter.

Gene Regulation at the Chromatin Level: Tightly wound DNA around histones prevents transcription

DNase-I Hypersensitive Sites: Tightly packages area around histones were not broken down by DNase, so they could not be easily transcribed

Less tightly compacted regions are more open, more readily transcribed, but are also more readily broken down by DNase

Epigenetics: phenotypic differences transmitted without genetic variation due to structural variation of chromatin (environmental impact on gene expression) see ch. 17 and 21!

Section 5: Mutation and Cancer

Chromosomal Mutation: changes that vary the number and/or structure of chromosomes within an individual

Aneuploidy: change in the number of individual chromosomes (Robertsonian Translocations or Nondisjunction)

Down Syndrome: trisomy 21; developmental and physical delays: https://www.youtube.com/watch?v=eruPJS_guNE

- **Primary**: caused by nondisjunction in Anaphase II (2n+1 = 47)
- **Familial**: caused by a robertsonian translocation between chromosomes 14 and 21 (2n = 46)

Cancer: cells unable to respond to normal controls to cell division which proliferate (divide) indefinitely

Clonal Evolution: mutations which increase the ability of a tumor to survive and reproduce will be `selected for’ in a growing tumor as it moves towards malignancy.

https://www.youtube.com/watch?v=UopUxkeC4Ls

All diagrams, tables and figures are the property of Benjamin A. Pierce; Genetics: A Conceptual Approach
Section 6: Other Topics in Genetics

Gel Electrophoresis (GE): Separation of DNA due to its mass (ie molecular weight)
DNA moves down an electrophoresis gel due to its net negatively charged backbone

Gel: highly porous agarose gel allows DNA to pass through. The largest pieces will travel the furthest and the smallest pieces will travel the least far. DNA is dyed to visualize under UV light (above, right)

Cathode (-): the negatively charged pole will repel the DNA towards the anode
Anode (+): the negatively charged DNA will be attracted to the positive charge

Polymerase Chain Reaction (PCR): DNA amplification using thermocycling (cycles of changing temperatures)

‘Raw Materials’: buffer solution (KCl or MgCl₂), Taq Polymerase, dNTPs, Template DNA, forward and reverse primer (ie free 3’-OH group)

Reaction: a process repeated ~20-40 times to amplify DNA exponentially

Denaturation (~2min @95°C): separates (denatures) DNA strands at high heat
Annealing (~1min @60°C): primers bind (anneal) to the ssDNA templates
Elongation (~1min @72°C): Taq Pol. adds dNTPs to ssDNA template

DNA Sequencing: determining the primary (nucleic acid) sequence of a DNA molecule

Sanger ‘Di-deoxy’ Sequencing: reaction is similar to PCR, but uses 4 separate containers with one of the four types of di-deoxy nucleoside triphosphates (ddNTPs) in addition to dNTPs. This gives the sequence complementary to each DNA strand
These lack a 3’-OH group, so they terminate DNA replication
Each of the four reactions (ddATP, ddGTP, ddTTP, and ddCTP) are placed into separate gels and run in electrophoresis → each ddNTPs has a fluorescent tag
The shortest molecules travel the furthest, so the DNA sequence can be determined by looking at band position from the bottom up [to the wells].

Biological species concept: A group of organisms which can interbreed successfully with one another, but are reproductively isolated by members of other species

Reproductive isolation:

Prezygotic barriers

<table>
<thead>
<tr>
<th>Habitat isolation</th>
<th>Temporal isolation</th>
<th>Behavioral isolation</th>
<th>Mechanical isolation</th>
<th>Gametic isolation</th>
</tr>
</thead>
</table>

Postzygotic barriers

<table>
<thead>
<tr>
<th>Reduced hybrid viability</th>
<th>Reduced hybrid fertility</th>
<th>Hybrid breakdown</th>
</tr>
</thead>
</table>

Viabile, Fertile Offspring
Practice Questions From the Whole Course:

1. Click this link to view the practice problems:
 https://docs.google.com/document/d/13yQZ0q78hm8ORlilg22ZpWfVug8dSWo6kEbq9aGfMCK/edit?usp=sharing

THANK YOU for using these resources this semester! Best wishes on your final exam!